
©2024 Databricks Inc. — All rights reserved

HOW TO USE DELTA
SHARING FOR
STREAMING DATA

Matt Slack - Senior Specialist Solution Architect
Surya Sai Turaga - Senior Solution Architect
13th June 2024

This information is provided to outline Databricks’ general
product direction and is for informational purposes only.
Customers who purchase Databricks services should
make their purchase decisions relying solely upon
services, features, and functions that are currently
available. Unreleased features or functionality described in
forward-looking statements are subject to change at
Databricks discretion and may not be delivered as
planned or at all

Product safe harbor statement

©2024 Databricks Inc. — All rights reserved

● Company - data provider for financial market data (similar to Bloomberg/State Street)

● Use Case - create a marketplace for financial data products, e.g.:
○ pricing and market data
○ company data
○ risk intelligence
○ economic data
○ news

○ commodities data

● Success Criteria
○ consistent sub 10 second data delivery to customers
○ integrates into customers existing systems
○ requires minimal additional infrastructure

3

Customer Story

©2024 Databricks Inc. — All rights reserved

● Achievable latency
currently around 10s

● Supports high volumes of
data

● Enables many other use
cases

Supports medium latency Reduces complexity Sharing externally and
cross-cloud

4

When is streaming for Delta Sharing a good fit?

● No additional infrastructure
needed (Kafka, Eventhubs,
Kinesis etc.)

● No (de)serialization to
AVRO/Protobuf/JSON…

● Schema management
without a schema registry

● Common semantics for
accessing tables with
batch/stream

● Secure for cross cloud
data sharing

Make your data available anywhere with low latency

©2024 Databricks Inc. — All rights reserved
5

Recap Delta Sharing architecture

Notes:
● Sharing happens on Delta part files, supporting

full tables, partitions, delta versions, …

● Client is system independent, just needs to be
able to read parquet files

● In Databricks Sharing Server and ACL checks
are integrated with Unity Catalog

Delta Table Delta Sharing
Server

Delta Sharing
Client

Data Provider Data Recipient

Delta Sharing
Protocol

Access
Permissions

Parquet files

request table

cloud tokens/
pre-signed short-

lived URLs

direct access to files (parquet format)
in the object store

Delta Sharing Protocol:
● Client authenticates to Sharing Server

● Client requests a table (including filters)

● Server checks access permissions

● Server generates and returns cloud
tokens/pre-signed short-lived URLs

● Client uses cloud tokens/URLs to directly
read files from object storage

permissions can be restricted to
specific partitions

spark.read.format(“deltaSharing”)

©2024 Databricks Inc. — All rights reserved
7

Streaming with Delta Sharing

Notes:
● Client maintains current table

version in the checkpoint
directory (same as when
streaming from a Delta table)

Delta Table Delta Sharing
Server

Delta Sharing
Client

Data Provider Data Recipient

Delta Sharing
Protocol

Access
Permissions

Parquet files

polls for new table versions

cloud tokens /pre-
signed short-lived

URLs

direct access to files (parquet format)
in the object store

Delta Sharing Protocol:
● Client authenticates to Sharing

Server

● Client polls for new table
versions

● Client requests a table version
(including filters)

● Server checks access permissions

● Server generates and returns
cloud token/pre-signed short-
lived URLs

● Client uses cloud token/URLs to
directly read files from object
storage that correspond to that
Delta table version

permissions can be restricted to
specific partitions

Streaming
Sources

(Kafka, Kinesis,
Pub Sub, Auto
Loader, Web
Sockets etc.)

spark.readStream.format(“deltaSharing”)

©2024 Databricks Inc. — All rights reserved

Optimising streaming read latency

• Delta Sharing server is a shared resource,
so streaming client has built in throttling -
can be reduced for low latency use cases
spark.delta.sharing.
streaming.queryTableVersionIntervalSeconds

• Calls to the Delta Sharing server can
require unpacking the delta log which may
take a few seconds, depending on cloud
provider access times

• Partitioned tables will increase the number
of files for each Delta table version, so
more overhead for the Delta Sharing server

8

Default client behavior is to throttle to prevent overloading the server

©2024 Databricks Inc. — All rights reserved

What latency is achievable?

9

Looking at different settings to improve throughput/latency

©2024 Databricks Inc. — All rights reserved

Monitoring streaming client progress

10

How can we ensure all clients have read a given table version

SELECT

event_time,

request_params.recipient_name recipient_name,

CAST(GET_JSON_OBJECT(response.result, "$.scannedAddFileSize") AS INT) file_size,

GET_JSON_OBJECT(response.result, "$.tableFullName") table_full_name,

CAST(GET_JSON_OBJECT(response.result, "$.numRecords") AS INT) num_records,

GET_JSON_OBJECT(response.result, "$.deltaSharingShareName") share_name,

GET_JSON_OBJECT(response.result, "$.tableVersion") table_version

FROM

system.access.audit

WHERE

service_name = 'unityCatalog'

AND action_name = 'deltaSharingQueriedTable'

AND event_time > current_date()

AND GET_JSON_OBJECT(response.result, "$.tableFullName") RLIKE

'.*dais_streaming_demo.*'

ORDER BY

event_time DESC

• One row per client
streaming query

• Shows all versions
consumed

• Allows identification of
which versions can be
VACUUMed

©2024 Databricks Inc. — All rights reserved 11

Streaming Demo

©2024 Databricks Inc. — All rights reserved
12

Demo Architecture

Delta Table Delta Sharing
Server

Customer
Delta Sharing

Client

spark
.readStream
.format(“deltaSharing”)

Python app
polls

WebSocket
and writes to
in-memory

queue

delta-rs writes
Pandas dataframe to

Delta table
JSON

Spark writes Pandas
dataframe to Delta
table using Photon

Python app
consumes from in-
memory queue and

builds Pandas
dataframe

Power BI
Dashboard
using API

Machine
Learning e.g.

Anomaly
Detection

Sharing Workspace Client Workspace

©2024 Databricks Inc. — All rights reserved

Maintaining consistent write SLAs

• Spark Delta writer can cause ~10s spikes in write times -
exceeding customer SLAs

• Switching to delta-rs provides more control over the delta log

• Some caveats

• delta-rs does not respect delta.checkpointInterval

• delta-rs does not implement auto compaction

• Each append adds a new entry in _delta_log - ADLS file listing
API slows down as the number of entries in _delta_log
increases

• Write time increases by ~3s for every hour

• Manually checkpoint, OPTIMIZE and VACUUM the table regularly
to speed-up directory listing

• PR to add cleanup_metadata to the Python API from the Rust
API - allows clean-up of files in _delta_log

13

delta-rs allows low-level tuning of Delta table writes

import deltalake as dl

dt = dl.DeltaTable(path, storage_options=storage_cfg)

configuration={

"delta.logRetentionDuration": "interval 5 minute",

"delta.enableExpiredLogCleanup": "true"}

dl.write_deltalake(dt, data=message_pd, mode="append",

storage_options=storage_cfg,

partition_by=partition_cfg,

configuration=cfg)

run this every 25 batches

dt.create_checkpoint()

dt.cleanup_metadata() # new method added to Python API

run this every 100 batches

dt.optimize.compact()

©2024 Databricks Inc. — All rights reserved 14

Questions

	HOW TO USE DELTA SHARING FOR STREAMING DATA
	

This information is provided to outline Databricks’ general product direction and is for informational purposes only. Customers who purchase Databricks services should make their purchase decisions relying solely upon services, features, and functions that are currently available. Unreleased features or functionality described in forward-looking statements are subject to change at Databricks discretion and may not be delivered as planned or at all
	Customer Story
	When is streaming for Delta Sharing a good fit?
	Slide Number 5
	Slide Number 7
	Optimising streaming read latency
	What latency is achievable?
	Monitoring streaming client progress
	Streaming Demo
	Slide Number 12
	Maintaining consistent write SLAs
	Questions

